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Abstract

In this paper, we present a two-stage hybrid Kalman filter to estimate both observa-
tion and forecast bias in hydrologic models, in addition to state variables. The biases
are estimated using the Discrete Kalman Filter, and the state variables using the En-
semble Kalman Filter. A key issue in this multi-component assimilation scheme is the
exact partitioning of the difference between observation and forecasts into state, fore-
cast bias and observation bias updates. Here, the error covariances of the forecast
bias and the unbiased states are calculated as constant fractions of the biased state
error covariance, and the observation bias error covariance is a function of the obser-
vation prediction error covariance. In a series of synthetic experiments, focusing on the
assimilation of discharge into a rainfall-runoff model, it is shown that both static and
dynamic observation and forecast biases can be successfully estimated. The results
indicate a strong improvement in the estimation of the state variables and resulting dis-
charge as opposed to the use of a bias-unaware Ensemble Kalman Filter. The results
suggest that a better performance of data assimilation methods should be possible if
both forecast and observation biases are taken into account.

1 Introduction

During the last decade, data assimilation has become a relatively frequently applied
methodology for the correction of errors in hydrologic model results. These errors orig-
inate from uncertainties in meteorological forcing data, model parameters, formulation
of the model physics, and initial conditions. A number of methods are available for
this purpose, of which the most commonly used are Newtonian nudging (Stauffer and
Seaman, 1990), the Extended Kalman Filter (Welch and Bishop, 1995), the Ensem-
ble Kalman Filter (Evensen, 1994), variational assimilation (Rabier et al., 2000), and
the Particle Filter (Gordon et al., 1993). These methods have been applied for the as-
similation of various variables. Examples of these variables and studies that focus on
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their assimilation are surface soil moisture values (Crow and van den Berg, 2010), sur-
face temperatures (Meng et al., 2009), brightness temperatures (Seuffert et al., 2004),
radar backscatter values (Hoeben and Troch, 2000), snow water equivalent (De Lannoy
et al., 2012), snow cover fraction (Su et al., 2010), piezometric head data (Chen and
Zhang, 2006), chemical tracer data (Ng et al., 2009), and discharge values (Pauwels
and De Lannoy, 2009).

In many studies, observations are used that contain both random error and signifi-
cant bias (Torres et al., 2012). Furthermore, hydrologic model results do not only con-
tain random errors, but in many cases are also prone to bias (Ashfaq et al., 2010).
Typically, the above mentioned methods only function optimally when the assimilated
data and the model are free of bias. In order to bypass this inconsistency, a number
of studies have focused on the removal of systematic differences between the assimi-
lated data and the model through rescaling the data to the model climatology (Reichle
and Koster, 2004; Slater and Clark, 2006; De Lannoy et al., 2012). Other studies have
focused on the estimation of the forecast bias in addition to the model state variabes,
using the Discrete (Kalman, 1960) and the Ensemble Kalman Filter for both linear and
nonlinear systems, in a wide range of applications ranging from groundwater model-
ing to soil moisture and temperature assimilation (Dee and Da Silva, 1998; Dee and
Todling, 2000; De Lannoy et al., 2007; Drécourt et al., 2006; Bosilovich et al., 2007;
Reichle et al., 2010). Dee (2005) further explains how forecast bias can be taken into
account in a data assimilation system using the Kalman filter or variational assimilation
as assimilation algorithm. The estimation of observation biases through data assimila-
tion has been investigated as well. Derber and Wu (1998) present a simple observa-
tion bias estimation scheme for the assimilation of radiance data into an atmospheric
model. Auligné et al. (2007) and Dee and Uppsala (2009) used a variational approach
to estimate satellite data biases, while Montzka et al. (2013) used the Particle Filter for
the retrieval of remotely sensed soil moisture biases. Another approach, as opposed
to state updating and online bias estimation, is to update model parameters in addition
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to state variables, under the assumption that all forecast bias is caused by the model
parameters (Moradkhani et al., 2005).

There have been two major practical approaches for forecast bias estimation with
a Kalman filter: state augmentation (Kollat et al., 2011) and separate state and bias
estimation (Friedland, 1969). Drécourt et al. (2006) compared both approaches using
a linear groundwater model, and concluded that both methodologies outperformed the
Kalman Filter without bias estimation. Two-stage state and bias estimation, referred
to as Bias-Aware Kalman Filtering by Drécourt et al. (2006), is an attractive approach
where the state and the forecast bias are estimated individually. Although it is clearly
demonstrated that, in the presence of forecast bias, this methodology outperforms the
estimation of the model state alone (Drécourt et al., 2006; De Lannoy et al., 2007),
observations are assumed to be unbiased in these studies. Furthermore, we are not
aware of assimilation approaches in hydrological studies that estimate both observation
and forecast bias, in addition to state variables. The objective of this paper is therefore
to develop a methodology, based on the Ensemble Kalman Filter (EnKF), to estimate
observation and forecast biases, as well as model state variables. More specifically, the
methodology of Dee and Da Silva (1998), in which two Kalman filters are applied, is
expanded to include observation biases as well. The major assumption of the proposed
methodology, as opposed to state augmentation, is that the observation and forecast
bias errors are independent of each other and of the errors in the unbiased model
state variables. This assumption needs to be made in order to enable the derivation
of a separate state and bias update equation. In this paper, we will demonstrate that,
despite this assumption, reasonable results can be obtained. The equations for the
estimation of the biases and the state variables are derived for a linear system, after
which the application for nonlinear systems in an ensemble framework is explained.
The method is then applied to a very simple rainfall-runoff model, into which discharge
values are assimilated, first in a well-controlled synthetic experiment, and then in a real-
world example. The performance of the new methodology is then analyzed in detail,
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and the possibilities for joint observation and forecast bias and model state estimation
are assessed.

2 Derivation for a linear system
2.1 System Description

The equations for the simultaneous estimation of system states and both forecast and
observation biases will first be derived for a linear system. The application of the ana-
lytical expressions in an ensemble framework will then be explained.

In the bias-aware Kalman filter, the state of the system is propagated from time step
k — 1 to time step k:

Xy =RA_1 X1 +By_1Fy + Wy (1)

X is the biased state vector, and f,_; is the vector with model inputs (for example the
meteorologic input data). w,_; is the model error, which is a random error term with
covariance Q,_4. A,_; and B,_4 are model matrices propagating states and forcings
at time step k — 1 to states at time k. For the remainder of the paper, variables indi-
cated with a [T] refer to biased variables, while variables without the [T] refer to unbiased
variables. The differerence between this equation and the equation used in the deriva-
tion of the Discrete Kalman filter (Kalman, 1960) is that here biased state variables are
used, while the bias-free Discrete Kalman filter is derived using unbiased variables.
The unbiased state vector x| is defined as:

Xk = ;\;k - b;(n (2)
b} is the forecast bias. The system is observed as follows:

Yi=Hx +v + b} (3)
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¥ is the vector with the biased observations. v is the zero mean observation error
with covariance R,. H, is the observation matrix, and b2 is the observation bias. This
equation differs from the equation used in the bias-free Discrete Kalman filter through
the observation bias term. The unbiased observations can be calculated as:

Yi=Yi—b} (4)
The bias vectors are propagated as follows:
{b;(n = b;(n—1 (5)
b, = b
k k-1

In the derivation of the two-stage state and bias update equations, it is important to
stress that the errors in the observation and forecast biases are assumed independent
of each other and of the error in the unbiased state of the system.

2.2 Propagation of the states and biases

In a simulation framework, an estimate of the system state is used inAtheA model. For
the remainder of this paper, estimated variables are deno:[ed with an [.]. [.]” indicates
an a priori estimate (forecast, before the update), and [.]* an a posteriori estimate
(analysis, after the update). The a posteriori state estimate is propagated as follows:

X, = A1 X, +By_1fy (6)

The system is observed as follows:

y; =H X, + b (7)
The biase estimates are also propagated:
{?T_ = PZ]—+1 (8)
bO— — b0+
k k-1
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2.3 Update of the states and biases

The observations are used as follows to update the states and biases:
by = by + Ky (i - by - Hy (%, - b))
b = by + K (74— by —H (X, - by 9)
K =Jog - b + Ky (71— By - My (3 - b))

KZ , Ki, and K, are the Kalman gains for the forecast bias, the observation bias, and
the system states, respectively. The filter thus works in two steps. First, the a priori bias
and state estimates are used to update the observation and forecast bias estimates.
The update is performed using the unbiased estimates: the observation bias is sub-
stracted from the observations, and the observation matrix is applied to the unbiased
state vector. The a posteriori forecast bias estimate b]'* is then used to calculate the
a priori unbiased state estimate, which is defined as:

X, =X -bm™ (10)
This definition, in combination with the a posteriori observation bias estimates, is used
to update the unbiased state estimates. It should be noted that the biased state is fed
back into the model. This, in other words, Eq. (10) is an output equation, providing
the unbiased state estimates, and is no part of the model integration. An analytical
expression for the three Kalman gains is thus needed. It is relatively straightforward to
prove that the last update in Eq. (9) leads to unbiased state estimates (Appendix A).

2.4 Definition of the error covariances

In order to derive an expression for the Kalman gains, a number of error covariances
need to be defined. The error covariances of the unbiased states, forecast biases and
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observation biases can be written as:
. T
P, =E [(xk -x3) (X = %) ]
. T
AR CESICESY )
. o\ T
Py =E [(b‘k’ - bi*) (b‘; - bﬁ*) ]
Similarly, the error covariance of the biased states can be written as:
g ~ = ~ 2 T
P, =E [(xk—x;> <xk—x;> ] (12)

2.5 The Equations for a bias-aware linear system

.

7\

Appendix B provides the details of the derivation of the equations for the application
of the bias-aware Kalman filter. These can be summarized as follows. The first step
consists of the propagation of the system state and the biases:

):(;: = Ak—1):(;—1 +By_1fy_4
m— M+
b, =b,", (13)
1O— O+
b, =b,,
Equation (13) can be initialized with any appropriate prior guess, i.e. typically a spun

up biased state estimate for x;_,, and zero estimates for the biases. The next step is
then the propagation of the error covariances:

P, = APl A[_, +P]" +Q,_;
PO~ = PO*, (14)
P;(n_ =P
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Section 3.3 explains how the forecast and observation bias error covariances can be
estimated in practice. The Kalman gains of the biases then need to be calculated:

- ~_ - T - -1
Ky =Py [Hy (P + Py ) HL + Py + Ry )
T - \ T - -1

KT = P H] [Hk <Pk +P )Hk +P% 4 Rk]
After which the bias error covariances can be updated:

PO+ — I_ KO PO—

folwdP (16)

P = [1+ K H,| P,

We can then calculate the Kalman gain of the state variables:
-1

Ki = PeH] [H( P HE +PS" + Ry | (17)
Using this Kalman gain, the state error covariance can be updated:
P, =[1- K H]P, (18)

The last step is then the update of the biases and the unbiased state variables. Since
in the update of the state variables the a posteriori bias estimates are needed, these
need to be updated first:

by = b+ Ky (i - By - Hy (%, - b)) o)

byt = by + K (i - By Hy (X - BY")

Finally, we can then update the unbiased state estimate:

Ko =K - b + K (71— By - My (% - b)) (20)
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2.6 Interpretation of the expressions for the Kalman gains

Equations (15) and (17) list the expressions for the three Kalman gains. These expres-
sions can be compared to the expression for the Kalman gain for a linear, bias-unaware
(or unbiased) system:

K. =P HT [H P-H +R ]_1 21)

k K kTR K Tk k
In the above derived expressions, firstly the observation bias error covariance appears.
For the bias estimation, the a priori bias error covariances are used, while for the state
update Kalman gain the a posteriori error covariance is needed. This is a logical con-
sequence of Eq. (9), where the a priori observation bias is substracted from the biased
observations in the innovations, while the a posteriori bias estimation is used in the
state update.

Further, for the bias Kalman gains (Eq. 15), both HkP;(”'HI and Hkﬁ;HZ appear in
the denominator, while for the state Kalman gain the denominator contains HkP;HI.
This can again be explained by the update equations (Eg. 9). For the bias updates,

H, ():(; - 132"') is substracted from the observations. X, — bf‘ is defined as the a priori

estimate of the unbiased state, with an error covariance matrix equal to F’;-PZ". Both
these error covariances are used in the Kalman gain. For the system state update, X,
appears in the innovation, and the unbiased error covariance P, is thus used (Eq. 17).

As a summary, the Kalman gain takes into account the uncertainty of all the terms in
the update equation, which explains the different terms in the denominator for the three
Kalman gain expressions.

A further difference between on the one hand the Kalman gains for the system state
and forecast bias, and on the other hand the Kalman gain for the observation bias, is
that the first factor in the Kalman gain expression for the system state and forecast
bias is multiplied by HZ, while for the observation bias Kalman gain it is not. This can
be explained by the remapping of the system state and forecast bias to the observation
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space, which is necessary for the system state and forecast bias, while for the obser-
vation bias it is not.

A final remark is the minus that appears in the expression for the forecast bias
Kalman gain. This can be explained by the definition of the forecast bias (Eq. 2) and
the observation bias (Eq. 4). A positive forecast bias means that the biased state is
larger than the unbiased state. A similar remark can be made regarding the obser-
vation bias. Assume a model with a positive forecast and observation bias. Further,
assume a positive observation system (in other words, all nonzero entries in H, are
positive). This means that an increase in the state variables will lead to an increase
in the observation. Assume also that the unbiased observation predictions are smaller
than the actual unbiased observations (meaning that the expression between brackets
in Eq. 9 is positive). This may imply that either the biased system state is underesti-
mated, or the forecast bias is overestimated, or the observation bias is underestimated,
or a combination of these possibilities. The possible overestimation of the forecast bias
explains the minus in the expression for the forecast bias Kalman gain.

2.7 Interpretation of the method

The objective of this method is to separate the mismatch between the observations and
the model results into forecast and observation bias, and random model and observa-
tion error. This is an additional difficulty as compared to the bias-unaware KF, where
this mismatch is separated into random model and observation error. The Kalman Gain
(Eqg. 21) can be interpreted as the fraction of this mismatch that is assigned to the model
noise, and maps this mismatch from observation space onto state space through the
observation operator H,. A similar reasoning can be made for the bias-aware KF. The
Kalman Gains K}, K}, (Eq. 15), and K, (Eq. 17) indicate the fraction of the mismatch
that can be attributed to the forecast bias, the observation bias, and the random fore-
cast error, respectively, and for the forecast bias and state estimates remap the differ-
ence between the unbiased observations and the unbiased simulations thereof to state
space.
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Equation (14) also shows that the propagation of the prior unbiased state error co-
variance contains an extra term as compared to the propagation for a bias-unaware (or
unbiased) linear system:

P = APy A + Qs (22)

More specifically, the a posteriori forecast bias error covariance needs to be added
to the forecast error covariance (the term PZ’*). This can be explained by the update
equations. Essentially, Eq. (1) shows that in the system the biased state vector is prop-
agated. The propagation of the biased state error covariace thus appears in Eq. (14).
However, in the calculation of the unbiased state, the forecast bias is substracted. This
implies that the unbiased state error will consist of the error in the biased state and
the forecast bias, which explains the extra term in Eq. (14). The definition of the unbi-
ased state forecast (or prior state) in Eq. (10) explains why the posterior estimate of
the forecast bias error covariance is used in Eq. (14).

3 Application in ensemble framework
3.1 General approach

The equations in Sect. 2.5 can easily be modified for an application in a nonlinear
system. In this respect, a distinction must be made between the system model and
the bias models. In Eq. (5) persistent (and thus linear) bias models are used, while the
system matrix A, _; will be replaced by a nonlinear model. One logical way to apply the
bias-aware Kalman filter is thus to have a mix between an EnKF for the system state,
and a Discrete KF for the biases.

The use of a persistent bias model is by itself an argument for separate bias-
estimation with a Discrete KF. Because of the persistent nature of the bias model, an
initial spread in the ensemble of biases would remain unaltered during forecast periods
and decrease at each analysis step. The latter would cause filter divergence, unless
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some artificial inflation would be applied, which is likely to lead to inconsistencies be-
tween the state and bias estimates. Here, we will leverage off the ensemble state error
covariance to approximate the bias error covariance estimate for the Discrete KF.

It should be noted that the mixed approach (an EnKF for the system states and
a Discrete KF for the biases) has been applied in several studies focusing on bias es-
timation, such as for example De Lannoy et al. (2007). This approach is thus extended
here, for the inclusion of observation biases.

3.2 Two-stage state and bias estimation versus state augmentation

A two-stage filter has a number of advantages over state augmentation. Firstly, the
dimensions of the state vector do not increase. For a small number of state variables
this may not be important, but for large systems this can be a considerable advantage.
The calculation of the forecast error covariance requires nﬁ-ne calculations (with ng
the number of state variables and n, the number of ensemble members). If the biases
are added to the state vector, the calculation of P, would require (21, + n0)2-ne cal-
culations (with n, the number of observations). The increase in the required number
of calculations thus evolves approximately quadratically with the number of state vari-
ables, which can be a significant drawback for large systems. It should be noted that
in the application of the EnKF the forecast error covariance does not need to be cal-
culated explicitly. However, the cross-covariance between the system states and the
observation simulations needs to be calculated, and a similar reasoning can be made.
Another advantage is that, if a model already contains a bias-unaware EnKF, the bias-
aware filter equations show that minimal code modification is needed to include the
bias estimates.

The separate bias and state estimation is possible through the assumption of un-
correlated state and bias errors. State augmentation could take these correlations into
account, but is computationally more expensive through the calculation of the cross-
covariance between the system states and the observation simulations.
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3.3 Estimation of the error covariances

Equations (15) and (17) show that a number of error covariances are needed: I5,;, P,
P, , P, ,and P}". These error covariances determine the partitioning of the difference
between the observations and forecasts into the different error and bias components.
However, it is not straightforward to optimally estimate each of these error covariances.
Here, we describe some assumptions made for this paper. The biased state error co-

variance is given by:
P =P P (23)

In order to estimate the forecast bias error covariance, one thus needs to know the
unbiased and the biased state error covariances. In this paper, we assume that the un-
biased state error covariance is a specified fraction of the biased state error covariance.
This is an approach that is used in many papers focusing on the estimation of biases
through data assimilation, including Dee and Da Silva (1998), Drécourt et al. (2006),
and De Lannoy et al. (2007). Calculating the biased state error covariance using the
ensemble results, we can thus write:

{P% =vP (24)
Pk = (1 - )/)Pk
y is a filter parameter, between zero and one, which can be obtained through calibra-
tion. A value of zero indicates that the entire model error is assumed to be caused by
bias, while a value of one indicates that noise is the only cause of errors in the model
results.

The observation bias error covariances can be estimated under the assumption that
a more uncertain observation prediction is accompanied by a more uncertain observa-
tion bias. For this reason, we estimate Pi' as a function of the error covariance of the
observation predictions:

Po” = KHkﬁ;H; (25)
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K is a filter parameter and can be estimated through calibration. Determining a typical
value for this parameter is not straightforward, as it will depend on the magnitude of the
different state variables and observations.

¥ and « can thus be tuned in order to optimize the filter performance. If the biases are
correctly estimated, the innovations in the update equation (Eqg. 20) should consist of
white noise, since the bias is removed from both the observations and the simulations.
This means that the autocorrelation length of these zero-mean innovations should be
zero. Both parameters can thus be tuned in order to reach this zero value. An example
of this filter parameter tuning is demonstrated in Sect. 7.2.

3.4 Summary

As a summary, the bias-aware EnKF can be applied as follows. First, the states and
biases are propagated from time step k — 1 to time step k:

2i- Si+ i
Xy = Thk-1 (Xk—1’wk—1)

b:(n_ = 5?3 (26)

fk k-1(.) is @ nonlinear operator representing the model in state-space, including the
model parameters and the meteorological forcings. / is the ensemble member number,
and w/_, is a realization of the model error, which can be obtained by a perturbation
of the model parameters, state variables, and/or meteorological forcings.

The next step is then the calculation of I5,: using the ensemble results:

R T
Pk - kaDk

24 A

2N— 22—
D, = [xk -X, o, X —xk] (27)
- 1 N 2j-—
k=N Zi=1 %k
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N is the number of ensemble members. P, and PZ‘ are then calculated using Eq. (24),
and Pi' is calculated using Eq. (25). The three Kalman gains are then calculated using
Egs. (15) and (17). Following Reichle et al. (2002), P;HZ can be calculated as the
covariance between the unbiased state and the measurement predictions, and H, P, HZ
as the covariance of the unbiased measurement predictions. Analoguously, Is;HI and

ka’; HZ can be calculated using the biased model results. This implies that P, and f’;
do not need to be calculated explicitly.

Before calculating the state Kalman gain, P,~ needs to be updated to P}, since this
is needed in the expression (Eq. 17). This is performed by:

P =P, [1-K}] (28)

Using the calculated Kalman gains and observation bias error covariance, the state
variables and the biases can then be updated:

,
~ 2

bT*=bf_+K?(Vk‘bz_‘hk(%:_bz_%=«~N)

52" = 62_ + K} (f’k - 52' = hy <):(;(_ B bZ]_)M N) (29)

7\

k;: = };(_ - bZ7+ + Kk (-;lk - bz+ - hk (;;{_ - bZH-) + V;)

h,(.) is a nonlinear function, relating the state variables to the observations. Note that
the two bias update equations are deterministic, while the third state update equation
is performed for each individual ensemble member. / is the ensemble member, and

hy ()”(j(‘ - bT‘) N indicates the average simulated observations, calculated across
=1,...,
the ensemble. V;( is a random realization of the observation error, and is needed in

order to ensure a sufficient ensemble spread (Burgers et al., 1998).
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4 Evaluation of the methodology

The derived equations are tested through a synthetic study. A very simple rainfall-runoff
model is first calibrated for the Zwalm catchment in Belgium. The obtained parameters
are then used to generate discharge and storage values. The synthetically true stor-
ages are obtained by adding a predefined bias to the modeled storage values (which
is consistent with Eq. 2). The synthetic discharge observations are then obtained by
adding a predefined observation bias to the discharge, obtained with these biased stor-
ages. Furthermore, a random-error term with a predefined standard deviation is added
to the synthetic discharge observations as well. This is consistent with Eq. (3). The
synthetic observations are then assimilated into the model, and the retrieved storages
and discharges can then be compared to the synthetic truth in order to evaluate the
performance of the data assimilation algorithm.

In order to thoroughly evaluate the performance of the filter, three experiments are
performed. Table 1 shows an overview of these experiments. The first experiment con-
siders only observation bias and noise, and no forecast bias. In order to generate the
synthetic truth, no bias is added to the storages, and a bias of 0.5m>s™" and a ran-
dom error with a standard deviation of 0.1 m®s™" are added to the synthetically true
discharge. These synthetic observations are then assimilated into the model with an
assimilation interval of 7 days. All observations could have been assimilated as well
(thus an update at every time step), but this would not as clearly demonstrate the im-
pact of the bias estimation.

The second experiment considers observation bias and noise as well as forecast
bias. Again, a bias of 0.5 m3s™" and a random error with a standard deviation of
0.1m3s™" are added to the synthetically true discharge. However, in order to gener-
ate the synthetic truth, bias is added to the storages. Forecast bias is generated this
way, in a manner consistent with the filter theory, and it can then be assessed to what
extent the bias-aware EnKF will correctly estimate the true storage and discharge val-
ues. The value of the bias added to the storages is obtained by examining the standard
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deviation in the modeled storages, obtained using the calibrated model parameters.
The bias was then assumed to be 10 % of this standard deviation. This resulted in
a bias of 20 mm, 0.4 mm, and 0.2 mm for the surface, slow reservoir, and fast reservoir
storages, respectively (see Sect. 6).

The third experiment considers only observation noise and forecast bias. A random
error with a standard deviation of 0.1 m®*s™" is added to the synthetically true discharge,
which is again obtained by adding a predefined bias to the storage values.

In order to investigate the possibility to estimate a temporally varying observation
and forecast bias, the three experiments are repeated, but with a sinus wave added
to the mean biases. The period of this wave is equal to one year and the amplitude
equal to 0.25 m3s~" for the observation bias, and 10 mm, 0.2 mm, and 0.1 mm for the
surface, slow reservoir, and fast reservoir storages, respectively.

5 Site and data description

The study is performed in the Zwalm catchment in Belgium. Troch et al. (1993) pro-
vide a complete description of this test site, only a very short overview will be given
here. The total drainage area of the catchment is 114.3 km? and the total length of the
perennial channels is 177 km. The maximum elevation difference is 150 m. The average
annual temperature is 10 °C, with January the coldest month (mean temperature 3°C)
and July the warmest month (mean temperature 18 °C). The average annual rainfall is
775 mm and is distributed evenly throughout the year. The annual actual evapotranspi-
ration is approximately 450 mm.

Meteorological forcing data with a daily resolution (the model time step) from 1994
through 2002 were used in this study. The precipitation and all the variables needed to
calculate the potential evapotranspiration using the Penman—Monteith equation were
measured by the meteorological station in Kruishoutem. Discharge was measured con-
tinuously at the catchment outlet in Nederzwalm.
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6 Model description

The Hydrologiska Byrans Vattenbalansavdelning (HBV) model, of which Fig. 1 shows
a schematic, was originally developed by Linstrom et al. (1997). In this paper, the ver-
sion of Matgen et al. (2006) is applied. The model uses observed precipitation (R(f))
and potential evapotranspiration (ETP(¢)) as input, both in ms™'. t is the time in sec-
onds. The catchment is divided into a soil reservoir, a fast reservoir, and a slow reser-
voir. There are thus three state variables: the amount of water in the soil reservoir (S(t),
m), the slow reservoir (S4(f), m), and the fast reservoir (S,(t), m).

A number of fluxes are calculated, which depend on the state variables of the system.
The actual evapotranspiration ETR(t) (mss‘1) is first determined:

ETR(f) = % 5@

ETP(?) (30)

max

A is a dimensionless parameter, and S, is the storage capacity of the soil reservoir
(m). The infiltration A;,(¢) (M 3‘1) is calculated as follows:

b
- &) Riot(2) (31)

Sm ax

Hin(t) = (1

b is a dimensionless parameter. After this, the effective precipitation Ry(f) (m s'1) is
determined:

Reﬁ(t) = Rtot(t) - Rin(t) (32)

The calculation of the percolation D(t) (m s'1) is then performed:

D(t) = Pe (1 P sififx) (33)
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Pe is a percolation parameter (m s ), and @ a dimensionless parameter. After this, the
storage in the soil reservoir at the end of the time step can be calculated as follows:

S(t + At) = S(t) + (R, (t) — ETR(t) — Perc(t)) At (34)

At is the time step in seconds. S(t + At) is always positive after model calibration.
The input in the fast reservoir R,(f) (m s‘1) is then:

Aoty = a2 gy (35)

Smax

a is a dimensionless parameter. The outflow from this reservoir Q,(t) (m3s'1) is then
determined:

S,(1) )y (36)

2,max

Qs(t) = Ky (

S max I8 the storage capacity of the fast reservoir (m), and «, (m3 s‘1) and y (-) are

model parameters. After this, the storage in the fast reservoir at the end of the time
step can be calculated as:

So(t + At) = Sp(f) + (Ra(t) — Qo(1)) At (37)
The input in the slow reservoir R4(t) (m s"1) is then computed:

R1(t) = Re(t) — Ra(t) (38)
The outflow from this reservoir Q(t) (m33'1) can be calculated as:

Q4(t) = k154(2) (39)
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K4 is @ model parameter (m2 s‘1). Finally, the storage in the slow reservoir at the end
of the time step is calculated:

Si(t + At) = S¢(t) + (R4(t) — Q4(t) + Perc(t)) At (40)

The total discharge g(t) is simply the sum of Q¢(t) and Q,(f). A triangular unit hydro-
graph is used for runoff routing. Since in this paper daily time steps are used, and the
concentration time of the catchment is only 14 h (Ferket et al., 2008), no routing needs
to be performed for this study.

As a summary, the model contains ten time-invariant parameters (1, Sy, b, @, Py,
B, ¥V, Somax: Ko, @and ky), and three state variables per time step (the storages S(t),
S4(t), and S5(t)).

The model was calibrated using Particle Swarm Optimization (Kennedy and
Eberhart, 1995), using the data from 1994 through 1997. Table 2 lists the obtained
parameter values, and Fig. 2 shows the comparison of the modeled to the observed
discharge for the entire simulation period. Based on these results, the rainfall-runoff
dynamics of the model are deemed to be sufficiently accurate to be used in a data
assimilation study.

7 Results
7.1 Ensemble generation

The experiments are applied with an ensemble of 32 members. The ensemble is gen-
erated by adding a Gaussianly distributed random number with zero mean to each
parameter value. The standard deviation of this random number is set to a fraction of
the original parameter value. It was ensured that the parameter values did not exceed
physical limits. At each time step, a random error is added to the observed precipitation
and potential evapotranspiration. Again, the standard deviation of the random error is
set to a fraction of the original observed value. The fractions to calculate the standard
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deviations are for each experiment calibrated to ensure an adequate ensemble spread
following De Lannoy et al. (2006).

7.2 Filter parameter estimation

Another issue in the application of the bias-aware EnKF is the estimation of the param-
eters y (used in Eq. 24 to estimate P, and PZ") and k (used in Eqg. 25). The objective
of the determination of these parameters is to obtain stable bias estimates, meaning
that the estimates do not continue to decrease or increase as the simulation proceeds.
y is clearly a value between zero and one, while an indicative value for « is more dif-
ficult to determine. It has been found that a too low value for « leads to observation
bias estimates that diverge from the true value during the simulation. Figure 3 shows
this for experiment two (a constant observation bias). The observation bias and the
biases for S and S; evolve to clearly unrealistic values. A value of 100 for k can be
seen to lead to stable observation bias estimates. The results of the filter have been
found to be less sensitive to the value of y. A value of 0.1 for this parameter has been
found to lead to stable estimates of the forecast bias. As explained in Sect. 3.3, the
autocorrelation length of the innovations in Eqg. (20) should be zero with a zero mean.
Figure 4 shows the ensemble average of the autocorrelation functions for each ensem-
ble member for the case of sinusoidal observation and forecast biases. Clearly, for all
lags larger than 0, the autocorrelations approach zero, which indicates that y has been
adequately estimated.

7.3 State and bias estimation for a constant observation and forecast bias

Figure 5 shows the estimated storages for each of the experiments described above,
using a constant observation bias. Figure 6 shows the analysis of the modeled dis-
charges, and the evolution of the estimated observation bias. For each of the three
experiments, the estimated unbiased storages and discharges are compared to the
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storages obtained using a bias-unaware EnKF in which only states are estimated and
biases are not taken into account.

Examining the results of experiment 1 (only observation bias), the advantage of the
bias estimation is evident. The bias-unaware EnKF leads to relatively large errors in the
storages, which practically disappear when bias is taken into account. Figure 6 shows
that taking into account the observation bias also leads to an almost perfect estimate
of the discharge. The observation bias shows fluctuations around the mean value, but
the true value of 0.5m>s™" is retrieved relatively accurately.

Similar conclusions, but to a lesser extent, can be drawn for the results of experiment
2 (both observation and forecast bias). Figure 5 shows that the estimation for the three
storages is better for the bias-aware EnKF as compared to the bias-unaware EnKF. For
S, and S, an almost perfect estimate is obtained, while for S the bias is reduced but not
eliminated. However, as S does not directly influence the discharge (see the equations
in Sect. 6), this should not lead to errors in the discharge estimation. Figure 6 shows
that indeed the discharge is almost perfectly estimated, and that the estimated bias
fluctuates around the correct value.

Regarding experiment 3 (only forecast bias), the results from the bias-aware EnKF
are better than for the bias-unaware EnKF. Figure 5 shows that for S the improvement
is marginal, but for S; and S, a reduction in the RMSE can be observed, while the bias
in the estimates is almost unaltered. Figure 6 shows that the discharge is almost per-
fectly estimated, and that the estimation of the observation bias again fluctuates around
the correct value. In experiment 2 and 3, S remains biased due to an observability is-
sue: the observed (assimilated) discharge is not directly related to S, and hence this
information cannot be efficiently used to update the bias estimate.

Further examination of Figs. 5 and 6 shows that the estimated storages and dis-
charges obtained using the bias-aware EnKF are almost identical for experiment 2 and
experiment 3. This can be explained by the relatively accurate estimation of the obser-
vation bias. Since the bias-unaware EnKF does not take this into account, the results
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for experiment 3 (where no observation bias is present) are significantly better than the
results for experiment 2 for the bias-unaware EnKF.

Table 3 shows the relative RMSE increase for both the bias-aware and the bias-
unaware EnKF. This relative increase is defined as:

RMSE, - RMSE,
RMSE,

Rl is the relative increase (%), RMSE, the RMSE of the assimilation run, and RMSE,
the RMSE of the baseline run. The RMSE values are calculated both for the state vari-
ables and the discharges. A positive value indicates an increase in RMSE as compared
to the baseline run, a negative value a decrease. If observation and forecast bias are
not taken into account, the analyzed discharge tends to be better estimated than for the
baseline run, but this does not necessarily mean that the storages are better estimated.
In other words, better discharge forecasts do not necessarily lead to better estimates
of state variables. On the other hand, when biases are taken into account, the state
variables are better estimated as compared to the baseline run (except for S). This
leads also to better discharge estimates, as compared to the results of a bias-unaware
EnKF.

RI =100 (41)

7.4 State and bias estimation for a temporally variable observation and
forecast bias

Figure 7 shows the comparison of the modeled storages to the synthetic truth for the
three experiments with a sinusoidally evolving observation and forecast bias. Figure 8
shows the comparison of the modeled discharge to the synthetic truth and the evolution
of the observation bias. The same conclusions can be drawn as for the experiments
with a constant observation bias. In all cases the observation bias and the discharge
are better estimated with a bias-aware EnKF, as compared to when a bias-unaware
EnKF is used. The estimation of the storages also strongly improves when a bias-aware
EnKF is used, as opposed to the use of the bias-unaware EnKF. The only exception
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is the estimation of S for experiment 3, where the bias and the RMSE slightly worsen.
However, this storage does not directly influence the discharge, which explains the
almost perfect estimation of the discharge.

Similar as for a constant observation bias, the results from experiment 2 and exper-
iment 3 are almost identical when a bias-aware EnKF is used, but not when a bias-
unaware EnKF is used. This can be explained by the relatively accurate estimation of
the observation bias.

Table 3 shows that, for the comparison of the results to the results of the baseline
run, the same conclusions can be drawn as for temporally constant observation and
forecast biases. If biases are not taken into account, slightly better discharge estimates
than the baseline run are obtained, with not necessarily better state estimates (except
for experiment 3 where the discharge estimates are also worsened). Taking into ac-
count the biases again leads to better state estimates (except for the storage S).

7.5 Benefit of dual observation-forecast bias estimation

In order to demonstrate the benefit of the estimation of both forecast and observation
biases, as opposed to the estimation of forecast biases alone (Dee and Da Silva, 1998;
Dee and Todling, 2000; Drécourt et al., 2006; De Lannoy et al., 2007; Bosilovich et al.,
2007; Reichle et al., 2010), the experiments described above were repeated, but the
estimation of the observation bias was turned off. Under these conditions, the state
and forecast bias estimation reduces to the methodology described in De Lannoy et al.
(2007). Table 4 shows the results of the comparison of the analyzed storages and
discharges to the synthetic truth. These statistics can be compared to the statistics in
Figs. 5-8, in order to assess whether the estimation of both forecast and observation
biases leads to better results than the estimation of forecast bias alone.

In all cases, as expected, the incorporation of an observation bias estimation leads
to a better estimate of the states and discharges. This is expressed by the lower bias
and RMSE values in Figs. 5-8 than in Table 4. These results thus clearly show the
benefit of a dual state and observation and forecast bias estimation.
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7.6 Analysis of the ensemble spread

A very important aspect of the application of the Kalman filter is to ensure an adequate
ensemble spread. Figure 9 shows the square root of the diagonal elements of the bi-
ased a priori error covariance matrix (thus the ensemble spread) and the observation
error covariance for the case with a sinusoidal observation and forecast bias. From
these plots the conclusion can be drawn that the ensemble spread is stable throughout
the simulation, and that ensemble collapse or instability do not occur. For the other
experiments, similar results were obtained. Figure 10 shows the relationship between
these ensemble spreads and the simulated discharge. The surface storage is only
slightly correlated to the total discharge, while the spread in the surface and ground-
water reservoir storages is more strongly correlated to the total discharge. As can be
expected, the standard deviation of the observation bias is strongly correlated to the
total discharge.

7.7 Observability of the biases

An important aspect in the application of the Kalman filter is the observability of the sys-
tem. This can be examined through the observability matrix, of which the rank needs to
be equal to the number of state variables. Since we are using persistent bias models,
with less observations than the number of state variables, the rank of the observability
matrix for the bias vectors will always be smaller than the number of state variables.
In other words, the use of persistent bias models will always lead to an unobservable
system. However, this observability issue is bypassed by the use of the parameters y
and « in Eq. (24) and « in Eq. (25), respectively. What these parameters essentially
perform, is firstly separate the biased background error covariance into an error covari-
ance of the unbiased states and an error covariance of the forecast bias, and secondly
relate the biased background error covariance to the observation bias error covari-
ance. If these two parameters are well chosen, by examining the correlation length of
the innovations, one should expect an adequate partitioning of the mismatch between
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observations and simulations into biases and state variables. This is demonstrated by
the results in the sections above. The development of realistic bias models is under
investigation, but this subject falls outside the scope of this paper.

7.8 Assimilation of in situ discharge data

In order to demonstrate the applicability of the dual bias estimation in real-world situa-
tions, in situ observed discharge rates are assimilated instead of synthetically true val-
ues. Again, an observation error standard deviation of 0.1 m°s™" has been assumed,
and an assimilation interval of 7 days has been used. Persistent bias models are again
used. Figure 11 shows the results of this experiment. A seasonal cycle in the observa-
tion bias can be seen. This is very realistic, because there is a relatively large scatter
in the discharge-water level relationship that is used to invert the water level obser-
vations into discharge values (W. Defloor, Department of Operational Water Manage-
ment, Flemish Environmental Agency, personal communication, 2012). Since the water
levels are usually low in the summer and high in the winter, this could lead to a seasonal
signal in the observation bias. The bias in the storages evolves to realistic values. The
unbiased discharge estimates and observations also show a slightly better match than
the biased values, which increases confidence in the obtained results. This real-world
application shows, at least for this relatively simple model, that the methodology can
also be used in realistic situations.

8 Discussion and conclusions

In this paper, we presented a two-stage hybrid Kalman filter for the simultaneous esti-
mation of forecast and observation biases and model state variables using the EnKF.
The filter equations were first derived for a linear system. A first step consists of the
updating of the forecast and observation biases, which are then used to update the
unbiased state estimates. The Kalman gains for the forecast bias, the observation
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bias, and the model state variables can be interpreted as the fraction of the mismatch
between the observations and the corresponding model simulations that can be at-
tributed to forecast bias, observation bias, and random forecast and observation error,
respectively, remapping this mismatch onto state space for the model state and bias
estimates.

The equations were then modified for nonlinear processes and observation systems
in an ensemble framework. We followed the same approach as in De Lannoy et al.
(2007). More specifically, a hydrid approach between an EnKF and a Discrete KF is
suggested, in which the state vector is estimated using the EnKF, and the biases are
estimated using the Discrete KF. The unbiased forecast error covariance and the fore-
cast bias error covariance are calculated as fractions of the biased forecast error co-
variance. The observation bias error covariance is calculated as a multiplication of the
observation prediction error covariance.

The developed methodology was then applied to a very simple conceptual rainfall-
runoff model, in a situation with either only observation bias, both observation and
forecast bias, or only forecast bias. The bias-aware EnKF with both observation and
forecast bias estimation outperformed the bias-unaware EnKF, as well as the bias-
aware EnKF with forecast bias estimation only.

The filter depends on two parameters, y and «, which are assumed constant in time,
and which are used to estimate the bias error covariances. « has been estimated by
examining the temporal evolution of the forecast bias. For low values of «, a continuous
absolute growth of the forecast and observation bias was observed. The results were
found to be less sensitive to the values for y. It can be argued that these parameters
should be made temporally variable, thus that a model for these two parameters would
have to be developed. A more realistic model for the evolution of the biases could also
be developed. Although this could certainly be the subject of further investigations, this
falls outside the scope of this paper.

A next step in the development of the two-stage hybrid filter will be the assimila-
tion of remotely sensed data such as soil moisture values into a spatially distribued,
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physically-based land surface model. The reliability of the method can be assessed by
examining the modeled discharge. It is well known that a good estimation of surface
soil moisture values will not necessarily lead to a good estimation of modeled dis-
charge and vice-versa (Lin et al., 1994). As a consequence, the use of discharge data
for the calibration of hydrologic models will probably lead to biased surface soil mois-
ture estimates. The reliability of the newly developed method can thus be examined by
examining the modeled discharge values.

This paper presents an initial step towards dealing with the complex problem of joint
observation and forecast bias and state estimation. The overall conclusion, based on
the results that have been described, is that there is potential to improve data assimi-
lation results if both observation and forecast bias are taken into account, as opposed
to the use of bias-unaware Kalman Filters.

Appendix A

Proof of the unbiased state estimate

It is relatively straightforward to prove that the last update in Eq. (9) leads to unbiased
state estimates. We can calculate the temporal average of the state estimate error:

(XF = x,) = <§(; — X, - b + K, (yk - b%* —H, (f(; - i)'k"+))> (A1)

The following definitions of the a priori estimate errors are used:

+ ~n —
ek=xk—xk
...+_,’.\_ ~
ek_xk—xk (A2)
el =b]" -b]
k — Yk Tk
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A similar definition is used for the a posteriori estimate error. In Eq. (A1) we add and
substract x, to the right hand side term, and use the previous definition:

() = (& - ey + Ky (7 - B3 —Hy (X, - b)) ) (A3)
through substitution of Eq. (3) we can write:

(eh) = <é; —e +K, (Hkxk #Vy+bO— b —H, (5“'(; - bz”))} (A4)
Substitution of Eq. (A2) and Eq. (2) leads to:

(eh) = <é; —e +K, (Hk (R - B) +v, €S —H, (i}; - b;“))) (A5)
Rearrangement and again substituting Eq. (A2) results in the following expression:
(€;)=(&, —e" +K, (-H,&_ +v,-e}* +H,&]")) (AB)

By definition, each individual error component on the right hand side is equal to zero.
For example, for the state vector we can write:

Xy = X~ b (A7)
We add and substract e, and substitute this once by Eq. (A2):

X =X —€, +X; — X, - b7 (A8)
This reduces to:

X, =X, —e, -bT (A9)

Comparison to Eq. (2) shows that by definition the estimate error average needs to
be zero. The temporal average of the a posteriori estimate error is thus equal to zero,
which means that the system estimates an unbiased state.
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Appendix B

The derivation for a linear system
B1 Calculation of the observation bias Kalman gain

First the expression for the Kalman gain for the observation bias will be derived. For
this purpose, the a posteriori error covariance of the observation bias (Pi*) needs to
be minimized. Substitution of Eq. (9) into Eq. (11) leads to:

(b‘; —b0 -K (yk —H X, +H, b - b‘;‘)) :

Py =E (b2 - by -K; <J7k ~HeX, +H b _62_>>T

(B1)

Expansion of this product, placing the Kalman gains and observation matrices outside
the expected value expressions (they are constant over a time step), using Eq. (3) for
the substitution of y,, and knowing that the unbiased states, the biases and the random
error are independent of each other, leads to:

PO =€ [(b; - (b2 _b;—)T] KOE [(b«; ~b) (b _b;—ﬂ
e [(b-87) (b3 -b) |+ omee [ (1 5) (- 52) ]
; (B2)
HIKST + KOE [(bz - by (b3 - By ] KST + KOH,
E [(bZ’ - by (b - bf-)T] HIKST +KOE [v, v ]| KET
Substitution of Eq. (11) and Eq. (12) results in the following expression:

PS* = Py - KSP™ - PYKST +KoH, (P; + P HIKST + KOPOKST + KPR, KST  (B3)
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The minimization of P}" means that the first derivative with respect to K is equal to
zero. Calculation of this first derivative and equalizing this to zero leads to:

[Hk (ﬁ; + PZ‘) H + Pi‘] KST + R, KT = PO (B4)
After rearrangement the Kalman gain for the observation bias can be written as:

o _ _ -1
KO = P [Hk (Pk +P ) HT + PO~ + Rk] (B5)
B2 Calculation of the Kalman gain of the forecast bias

Similarly as in the derivation of the expression for the observation bias Kalman gain,
the a posteriori error covariance of the forecast bias (PZ’*) needs to be minimized.
Substitution of Eq. (9) into Eq. (11) leads to:

(b7 - by~ — KJ (34— Hiky + Hib™ = BY)) -

(bT—i)T'—KZ (i/k—Hk};J,Hkbkm__bi_))T (B6)

P =E

Again, expanding this product, placing the Kalman gains and observation matrices
outside the expected value expressions, using Eq. (3) for the substitution of y,, and
knowing that the unbiased states, the biases, and the random error are independent of
each other, results in the following expression:

P+ g [(bg -y (] _5g—)T] +KITH,E [(:;;v -y (b - y;—)T]
+E [(bf - by (b7 - b'k"-)T] HIK?™ + KIH,
E [(xk - %) (% - };)T] HTK™ + KT E [(b; -by) (b - b‘;->T] KO

+KIH,E [(bm -b77) (b7 - 6"’-)T] HEKT + K7E [v v} KT

(B7)
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Substitution of Eq. (11) and Eq. (12) results in the following equation:
P/ =P7~ + K'H,P7~ + P/ H K/ + K'H, P

+KI'H, P HIKTT + KR, KT

T T - T

Derivation of this expression with respect to KZ’ and equalization to zero leads to:
[Hk (ﬁ; + PZ") H + PZ‘] KT + R KT = —H, P~ (B9)

Rearrangement finally leads to the analytical expression for the Kalman gain for the
forecast bias:

-1
_ -HT 5- -\uT -

K7 = -P""HT [Hk (Pk+PZ )Hk+P‘k’ +Rk] (B10)

B3 Calculation of the Kalman gain of the states

The objective is to estimate the unbiased state vector as accurately as possible. For
this purpose, similarly as in the derivation of the expression for the biases Kalman
gain, the unbiased a posteriori error covariance of the model states (P,) needs to be
minimized. Substitution of Eq. (9) into Eq. (11) leads to:

<Xk—)£(; + b7 - K, (j/k_ka(; +H b —IA)T))-

o (o= %5+ B - Ky (e - Mg +Hb™ - B77))

(B11)

Similarly as in the derivation of the Kalman gains for the biases, this product is ex-
panded, placing the Kalman gains and observation matrices outside the expected value
expressions. Equation (3) is used for the substitution of y,, and knowing that the unbi-
ased states, the biases, and the random error are independent of each other, results in
the following expression:
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Py = [(xi - %) (x - %) T] ~KHE [ (xi = %) (xic-5)]
= E (= %) (i = %) T HIKE + K HGE [(xic - 5;) (3= 53) T HIKT  B12)
+KE [(bg - by (b2 - by ] KL+ KE [vv ]| KT

Substitution of Eq. (11) and Eq. (12) leads to:

Py =P, -K.H,P, -P,HK/ +K,H,P,H K| +K,P>"K] +K,RK] (B13)

Calculation of the first derivative with respect to K, and equalization to zero results in
the following expression:

[HkP HT+P°+] KT +RK] = H,P; (B14)

After rearrangement, the Kalman gain for the ubiased states can be written as:

-1
Ki = PoH] [HPLHT +PS" + Ry | (B15)

B4 Updating of the error covariances

In the application of the Kalman filter, the error covariances need to be updated. This
is performed using the previously derived expressions for the a posteriori error covari-
ances (Egs. B3, B8 and B13). These equations can be rewritten as:
- O P § —T T
P; =P, - KHP, - P,HIK] + K, [HkPka +PO 4 Rk] K!
Po* = PO — KOP%™ - PO KT + KO [Hk (ﬁ' + P"") Hy + P + Rk] KT
P = P 4+ KP'H, PP + P HIK! + K [Hk (P +P7 ) HY + PO + Rk] KT
(B16)
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Substitution of the Kalman Gains (Eq. 15), and leaving out the factors that cancel each
other leads to:

Py = [1- K(H, P
Py = [1-K;] P, (B17)
Pyt = 1+ KH, P~

The minus in the expression for the forecast bias Kalman gain explains the plus in
the propagation of the forecast bias error covariance. The fact that a remapping of
the system state and the forecast bias to observation space is needed explains the
H, factor in the equations for the system state and forecast bias error covariances,
while this factor does not appear in the observation bias error covariance propagation
equation.

B5 Propagation of the state error covariance

The a posteriori error covariances need to be propagated from time step k — 1 to time
step k. First, we will propagate the unbiased state error covariance. Substituting the
definition for the forecast bias (Eq. 2) into Eq. (11) leads to:

- v m_5s— o hm+)\ (% m_i-  pme\!
Pk=E[<xk—bk—xk+bk ) (%i- by =%, + by ] (B18)
Substitution of the system equation (Eq. 1), again substituting Eq. (2) and simplification
results in:

- s+ m | pm+
A ~ T
< 2+ m m+

Expansion of the product, knowing that the errors in the unbiased state estimates, the
biases, and the noise are independent of each other, and substituting the expressions
5203
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for the error covariances leads to:

P, =A,_P;_ Al  +P7*+Q,_-A,_,
£ [(br-b) (o -7) | - €| (o - ) (o, - By | AL

We know that b is equal to by, and that b}~ is equal to b}, This is written in the
system description (Egs. 5 and 8). We can thus write the following:

e [(op -1 (er -60°)

(B20)

T (B21)
=E [(bf_1 =by7) (b - by + KT (74— Hik + Heby™ - b)) ]
Substitution of the observation equation (Eq. 3) and rearrangement leads to:
. W AT
| (or, - by (b7 - 7) ] =P
(B22)

- - A_ A Ao \T
+E[<bf_1—b'k"_+1) (Hikic — b + v, + bY — H X, + H b~ - bY) ]KZ'T

We know that the forecast bias is independent of the observation bias and of the ob-
servation noise. This expression thus reduces to:

| (b, - by (b7 - 877) ] -

. (B23)
PZ: +E [(b;(n—1 - bTJ) (Hk)?k —-Hb —-H, X, + Hka-) ] KZ’T
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This can be rewritten as:

e[ (or - (er -60°)

=P [ (07 =) (ox—Hek) ] T

(B24)

We know that the unbiased state errors are independent of the bias errors. So the last
term reduces to zero.We can thus write the propagation equation as:

P, =A,P/_ Al +P"+Q,_, (B25)

The use of a persistent bias model will lead to a propagation of the bias error covari-
ances to the next time step without transformation:

Pm— — Pm+
{ e (B26)
P, =Py
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Table 1. Properties of the observation and forecast bias in the synthetic experiments.
Experiment Experiment Forecast bias Forecast bias  Observation Observation
set average (mm) amplitude (mm) bias average bias amplitude
s s S, S S5 S (mis™) (m®s™)
1 1 0 0 0 0 O 0 0.5 0
1 2 20 04 02 0 O 0 0.5 0
1 3 20 04 02 0 O 0 0 0
2 1 0 O 0O 10 02 0.1 0.5 0.25
2 2 20 04 02 10 0.2 o0A1 0.5 0.25
2 3 20 04 02 10 0.2 o0A1 0 0.25
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Table 3. Relative RMSE values of the analyzed results from the bias-unaware and the bias

aware EnKF.

Experiment Variable Bias-unaware EnKF Bias-aware EnKF
Constant Observation and Forecast Bias
1 S 394.76 -81.95
1 S, 324.48 -71.18
1 S, -65.77 -95.41
1 Q -23.36 -92.75
2 S 68.42 0.71
2 S, 257.35 -39.42
2 S, -64.62 -92.11
2 Q -17.3 -85.43
3 S 2.81 0.69
3 S, -20.35 -39.29
3 S, -89.4 -92.11
3 Q -0.49 -32.15
Sinusoidal Observation and Forecast Bias
1 S 96.31 -15.93
1 S, 298.96 -52.93
1 S, -80.7 -88.31
1 Q -40.36 -78.02
2 S 52.95 2.27
2 S, 219.74 -25.42
2 S, -79.17 —-86.26
2 Q -34.01 —-74.03
3 S -9.77 2.24
3 S, 35.67 -25.2
3 S, -72.43 -86.26
3 Q 27.73 -33.16
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Table 4. Statistics of the linear regression between the true states and discharges (X) and the

values obtained using an observation bias-unaware EnKF (Y).

Experiment Variable Units Mean X MeanY Slope Intercept R RMSE
Constant Observation and Forecast Bias
1 S mm 98.350 95.461 0.985 -1.464 0.998 3.795
1 S, mm 11.147 13.679 0.991 2.626 0.985 2.603
1 S, mm 0.859 1.136 1.006 0.270 0.997 0.292
1 Q m3s™' 1573 2065 0.986 0.513 0.997 0.501
2 S mm 117.838 96.360 0.984 -19.625 0.997 21.671
2 S, mm 11.519 13.961 0.980 2.672 0.979 2.543
2 S, mm 0.917 1.108 1.030 0.163 0.997 0.217
2 Q mis™"  1.575 2.067 0.981 0.520 0.997 0.502
3 S mm 117.838 97.719 0.989 -18.916 0.996 20.374
3 S, mm 11.519 11.747 0.994 0.293 0.986 0.621
3 S, mm 0.917 0.861 1.041 -0.093 0.997 0.129
3 Q m®s™"  1.575 1.626 0.990 0.066 0.997 0.117
Sinusoidal Observation and Forecast Bias
1 S mm 96.975 90.925 0.988 -4.897 0.982 9.547
1 S, mm 11.291 13.822 0.990 2.633 0.941 2.835
1 S, mm 0.833 1.120 1.062 0.235 0.993 0.336
1 Q m3s™' 1557  2.061 1.023 0.468 0.991 0.536
2 S mm 116.468 86.113 0.983 -28.457 0.976 31.533
2 S, mm 11.674 13.530 0.976 2.128 0.934 2.280
2 S, mm 0.885 1.132 1.076 0.178 0.994 0.303
2 Q m3s™"  1.559 2.057 1.011 0.480 0.990 0.534
3 S mm 116.468 98.404 0.996 -17.613 0.975 20.048
3 S, mm 11.674 13.705 1.006 1.957 0.896 2.690
3 S, mm 0.885 0.820 1.108 -0.162 0.992 0.235
3 Q m3s™'  1.559 1762  1.027 0.160 0.990 0.283
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Fig. 1. Schematic of the HBV model.
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Fig. 2. Evaluation of the modeled discharge. The thick solid lines are the observed discharge,

and the thin lines are the model results.
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Fig. 4. Ensemble average of the autocorrelation function of the innovations in Eq. (20) for each
ensemble member, for the case of sinusoidal observation and forecast biases and « equal to

100.
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The top, middle, and bottom two rows show the results of experiment 1, 2, and 3, respectively.
The first, second, and third column show the results for S, Sy, and S,, respectively.
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constant observation bias experiment. The dashed lines are the regression lines, the solid
lines the 1 : 1 line. For the bias estimation, the dotted lines refer to the true bias.
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Fig. 7. Comparison of the estimated storages obtained using the bias-aware and a bias-
unaware EnKF, for the sinusoidal observation bias experiment. The dashed lines are the re-
gression lines, the solid lines the 1: 1 line. Synthetic true values are in X-axis, estimations in
Y-axis. The top, middle, and bottom two rows show the results of experiment 1, 2, and 3, re-
spectively. The first, second, and third column show the results for S, S;, and S,, respectively.

5220

| Jadeq uoissnosigq | Jeded uoissnosiq | Jaded uoissnosiqg

Jaded uoissnasiq

HESSD
10, 5169-5224, 2013

Online bias
estimation

V. R. N. Pauwels et al.

(8
S

]
2


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/5169/2013/hessd-10-5169-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/5169/2013/hessd-10-5169-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

Q experiment 1 bios unaware Q experiment 1 bios aware Observation bias experiment 1
T T T T T T T 10 A e ASaiaans
/
/] /
20 7 20 7 |
4 V
2 7 2 7
£ sf 7 7] e 7 1 A
5 4 s % £
£ ;. £ o Y
8 , Mean X 1 1,557 3 Mean X 1 1,557 g 0-
£ op % 1 € 1| ] g
Z < Vean ¥ 5 1732 Z Vean ¥ 5 1.574
v Siope : 0.879 v Siope : 1.035
Intercept : 0.361 3 Intercept : —0.03¢
st i 4 st p i 5
% osss R 07
ruse 0312 RuSE - 0115 ool
. . . . . . . . T
10 15 20 5 10 15 20 o 500 1000 1500 2000 2500 3000
True value (m's”) True volue (m's™) Time step (doys)
Q experiment 2 bios unaware Q experiment 2 bios awore Observation bias experiment 2
T T T T T T T T T v 10 i A e ASaEaan
251 4 251 e
4 V.
4 V.
201 7 1 201 Y 1
o ol o 7
- ; K p -
E 5L 7 4 E 5L 4 4 n
5 4 5 £
H e H 2
£ b 1 £ b ®
5F 5 R: 0983 1 5r
RuSE - 0343 RuSE - 0155 ool
o . . . . . 0 . . . . . T
o 5 10 1 20 25 o 5 10 1 20 25 o 500 1000 1500 2000 2500 3000
True volue (m's) True volue (m's™) Time step (doys)
Q experiment 3 bios unaware Q experiment 3 bios aware Observation bias experiment 3
r T T T T T r T T T T ; 10 A e A
250 /4 250 V|
7 V.
’ Y
201 7/ 1 20 Y b
~ 7 ~ y
A , A ,
E E .
;/ 15 % 1 ;/ 15 1
3 7 Mean X : 1.558 3
5 . o X1 1. 5
£ of 7 Mean ¥ : 1636 £ of
& i - &
E Siope © 1.087
Infrcept : 0,05
Elg : R 0990 71 S5 R 0996 71
Ruse 0258 RuSE - 0135
-0.5F
o . . . . L 0 . . . . L T
o 5 10 15 20 25 o 5 10 15 20 25 o 500 1000 1500 2000 2500 3000
True volue (m's”) True volue (m's™) Time step (doys)

Fig. 8. Comparison of the estimated discharges obtained using the bias-aware and a bias-
unaware EnKF, and the evolution of the observation bias throughout the simulation, for the
sinusoidal observation bias experiment. The dashed lines are the regression lines, the solid
lines the 1: 1 line. For the bias estimation, the dotted lines refer to the true bias.
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Fig. 9. Time series of the standard deviation of the a priori biased state error covariance (top
three panels) and the a priori observation bias error covariance (bottom panel) for the experi-
ment with sinusoidal observation and forecast biases.
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Fig. 10. Relationship between (1) the standard deviations of the a priori biased state error
covariance and the a priori observation bias error covariance, and (2) the simulated discharge.
In the two top and the left hand side bottom panels, P in the Y-axis refers to the a priori forecast
error covariance. In the bottom right hand side panel, Po refers to the a priori observation bias
error covariance.
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Fig. 11. Results of the assimilation of in-situ observed discharge rates. Left panel: the bias
estimates. The top plot shows the results for the observation bias. The following three plots
show the bias in S, S; and S,. Right panel: the discharges.
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